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is studied in the case of repulsion. The EOMS contain functional expressions depending 
upon the past history or the  bodies. The convergence of an iteration method is proved 
which gives the 'instantaneous' equations describing all the weakly relativistic solutiom of 
the initial E O M ~ .  The results obtained rule out from a physical consideration the non- 
classical degrees of freedom introduced by the effects of heredity. 

1. Introduction 

In the investigations of dynamics of interacting bodies of a comparable mass one is 
often forced t o  eliminate field variables from the equations of motion (€om) in order 
to express these in terms of particle trajectories. Because of finite speed of propagation 
of interactions in relativistic dynamics the EOMS contain functional expressions depend- 
ing upon the prehistory of the bodies, therefore the EOMS are delay-differential equations 
or, more generally, functional differential equations [ I ,  21, and not ordinary differential 
equations. The examples come from classical electrodynamics and from general relativ- 
ity (see e.g. [3-81 and references therein). Besides difficulties in studying the EOMS, 

the dependence upon past history creates problems in  formulating quantum mechanical 
and statistical models in terms of particle variables alone. In the weakly relativistic 
(wn) case (i.e. characteristic speed of particles uch<< 1, where the speed of l ight=l)  
one usually eliminates this dependence by means of truncated expansions in powers 
of uCh or of a n  interaction constant, thus yielding a system of ordinary differential 
equations (som). The validity of such expansions is obscure, especially for the infinite 
time interval. The variety of solutions of a system of functional differential equations 
(SFDE) is usually much wider than that of SODE, and the infinity of solutions may be 
lost in the above approximation procedure [ij. As a resuit, one obtains only a finite 
number of degrees of freedom instead of the infinity of them typical in the presence 
of the effects of heredity [.I, 21. Therefore questions arise on the validity of the 
approximations involved and either the omitted degrees of freedom are of physical 
importance or  they  may be rejected. In this connection it would be instructive to 
analyse the questions for relatively simple exact EOMr allowing a rigorous treatment. 
This is carried out in this paper for a special class of Poincari-invariant E O M ~  of 
two-point particles which take into account the retardation effects explicitly. At the 
same time the results on the convergence are valid for rather general E O M ~ .  The main 
results are given by theorems 1 and 2. 

The E O M ~  considered are described in section 2; they reflect the specificity of the 
relativistic dynamics and include in particular, the well-known exact equations which 
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were studied earlier in the restricted (one-dimensional ( I D )  etc) cases [4-81. We also 
discuss here the general questions concerning the statement of the problem. In section 
3 we describe the iteration method and prove its convergence for a general SFDE. We 
state here the existence of an SODE with global solutions satisfying an initial SFDE. In 
section 4 these results are applied to the EOMS described in section 2. We show that 
the infinite number of degrees of freedom is ruled out if one is confined by the WR 

two-body trajectories considered up to the infinite past, these trajectories forming a 
phase flow of an ‘instantaneous’ SODE with the classical number of degrees of freedom. 

2. Equations of motion 

We consider the EOMS of two-point bodies described by the trajectories x , , ( f )  corre- 
sponding to the one-particle action functionals (particularly for p = 1, 2) 

S,,= ds,(-m,,+gL,) (2.1) J 

l j  

where the masses m, > 0 will be supposed to be of the same order, the constant g 
comprises the charges appropriate to the interactions involved, ds,, = (1  - - . + ; ) I i 2  dtp 

L, =g ds, sd(t, - tqI2- (x, -x,)’le(r, - r,)&, (2.1’) 

wherep, q = 1 ,  2 , p # q ,  x p : = x p ( t p ) ,  x’=(I,x) andf,:=f(P,,)./(P) is the function 
supposed to be analytic in the neighbourhood of the point P = 1, and f (  1) = 1, 

the Greek indexes run over 0-3, 6 ,  is the Dirac function, 0 is the Heaviside step 
function, 7 =diag(l,-1, -1, -1). We consider the case of repulsion, i.e. g>O. 

The equations following from (2.1) as a result of variational principles SS,/Sx, = O  
embrace the two-body E O M ~  of classical relativistic electrodynamics and those of the 
linear approximation of GR; the special cases have been studied in [4-8]. The explicit 
form of the E O M ~  

m, d2x,( t)/dr2=gH,(X,) (2.2) 

( X , ( u ) : = X ( t + u ) )  is given by the relations 

H,(x , )  := H(x,,, x,) = (1  - X ; ) I i 2 [  A,, - X,,( XpA,,)] (2.2’) 

d 
d s  

A, := JL, /Jx ,  -- {a[(l -X~)”2L,,]/JX,,) 

=L j ds,S,[( t P -  r4)2-(xp -x,)~]s(~, ,  - r q )  
27r 

(2.2”) 

where B,, = U,[P,,&-f,,] - U&,,; W,, = ( x : - x ~ ) U p c .  I= I,, ds =ds,. 
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The SFDE (2.2) is the system of differential equations of a neutral type (in the sense 
of [I]) with deviating arguments depending upon the unknown functions. The sin- 
gularities of ( 2 . 2 )  correspond to collisions and light-like behaviour of the trajectories. 

The fundamental effect of heredity introduced by the deviating arguments is that 
the solutions of the equations like (2 .2)  do not form the phase flow, that is, there may 
be the intersections of the trajectories in the phase space. As a rule these solutions are 
not specified uniquely by the initial conditions: 

i d t o )  = up,o XI.( t o )  = x,,o p = 1 , 2 .  ( 2 . 3 )  

If the functions x , ( t )  are given on some segment of f s to. the unique continuous 
extension on f >  io exists for a rather general SFDE [ I ,  21. Then, because the isolated 
two-body system is subject for f < to the same E O M ~  as for /> to, one comes to the 
‘backwards’ problem [ 4 ]  of solving ( 2 . 2 )  on 1 E (-m, to]  under the conditions (2 .3) .  
There may still be an infinity of the backwards solutions satisfying (2.3); however, the 
main part of these had an unphysical behaviour in the past and may be ruled out. 
This is confirmed by the investigations of the I D  two-body problem of electrodynamics 
[ 4 - 8 ] .  If the uniqueness of the backwards solutions from certain ‘physical’ classes does 
take place, one may hope that there exists an SODE 

d ’ x , ( t ) / d t * = C , ( i , ( t ) , x , ( t ) ,  x i ( t ) , X J t ) )  (2 .4)  

C,:  RI2+ W3, p = I ,  2, which generates these solutions. In this case SODE (2 .4)  may be 
referred to as an instantaneous form of the EOMS 

Thus the main questions are related to the existence of SODE (2 .4) ,  the convergence 
of the approximation method to construct C,, and completeness of solutions of (2 .4)  
to exhaust the physical solutions of SFDE (2.2). 

We now give the precise formulation of the results concerning EOMS (2.2) to be 
proved in the following sections. 

The functions xp E C2(R, W’) will be said to be a solution of ( 2 . 2 )  if 

’ 

l i p ( t ) l<  1 XI( t )  f X2( 1 )  (2.5) 

and they satisfy (2 .2)  identically on R. Note that in the case of repulsion the solutions 
are continued on the whole R; the restriction by the values f < to would not change 
anything. 

Define the domain D ( E )  from the space of variables 

( V I .  v 2 ,  X I ,  1 2 )  ER12 

as follows: 

( 2 . 6 )  

where k = g/min(m, , m,), x , ~  := x, - x2, E > 0 will be supposed to be sufficiently small, 
Let W ( E )  be a class of WR trajectories defined by the relations 

2 D ( E ) = { ( u I ,  02, X I ,  ~ 2 ) :  u p s  E , P =  1 , 2 ;  k/lx>21< E )  

Xp E C2(R, R’) ( i i ( t ) , % ( t ) ,  x i ( l ) , X A f ) )  E D ( E )  V i  ( 2 . 7 )  

sup{~ip(/)l, f E R) < p = l , 2 .  (2 .8)  

The following theorem proved in this paper answers the question of the existence 
These properties are characteristic of any quasiclassical motion. 

of the instantaneous form of WR EOMS. 
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Theorem 1. In the EOMS (2.2) corresponding to (2.1) let g>O. There exist the values 
E, E ' ( &  > E ' > O )  and the Lipschitz-continuous functions C, :R12+W3, such that for any 
data (U,,,, x,,") E D(  E ' )  there is a unique solution {x,,) E W (  E )  of (2.2) with the conditions 
(2.3); this solution satisfies SODE (2.4). 

3. The convergence of the iteration method 

In this section we consider the convergence of iterations of the operator equations 
(3.20) corresponding to the the general n-dimensional SFDE (3.16) described below. 
The iteration procedure gives a sequence of SODE approximating the right-hand side 
of (3.16). The consideration relies upon work [9, IO] where it was shown that differential 
equations with sufficiently small retarded arguments admit the finitely parametric 
families of solutions as being the solutions of an SODE. We use the method of [IO] to 
construct this SODE. The specificity of (2.2) is that these form neutral-type SFDE which 
contain the unbound retardations depending upon the unknown functions. This needs 
a modification of the results of [lo], which has been carried out in our paper [ l l ]  
used below to prove the convergence of the iterations of (3.20) yielding the exact 
'instantaneous' SODE (3.23). 

3.1. The properlies of the functional classes involved 

Consider the functions 

Ak :R" xR"+R+ k = 1 ,  . . . , ko 

A ( Y )  = maxlAdy, Y), k = 1,. . . , kol 

satisfying the inequalities 

(3.4) 

wherey=(y, ,  . . . . y , )  ER",%, andx,aresomeconstants,and d(y)isthedomaininR": 

d ( y )  = { z = ( z , ,  . . . , z,)ER": Izr-y,lsA(y)g?(y),  i =  n , ,  . . . , n l  1 s n ,  S n. 

Define a set S of functions 

x =(X,, . . . , X , ) €  C'(JXCO,,W") J,:= {s: Is1 s A(z)) 
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satisfying the relations 

I X ( s ) l  s gl(X(s)) i = 1 ,  . . . , no 
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(3.5) 

i ~ ~ ~ X ~ o ~ , X ~ o ~ ~ l x j ~ s ~ - x j ~ s ' ~ l s l s - ~ ' l ~ ~ X ~ o ~ ~  (3.6) 
, = I  

and the set M of function F = ( F , ,  . . . , F,) : W" + R" such that 

IF,(Y)l s P J Y )  i = l , . .  . , n (3.7) 

1 Pj(Y,Y ' ) lF , (Y)-F, . (Y ' ) ls  L(Y,Y ' )n(Y,Y ' )  (3.8) 
i = ,  

where 

n ( y ,  Y ' )  := 1 A Y ,  Y')lY,-Y:l 
t = l  

and 3u>O such that 

o s L ( z , z ' ) s u L ( y , y ' )  for z E d ( y )  Z'E d ( y ' )  (3.9) 

Q ( Y ) >  f l"L(Y, Y )  z PAY, Y)€!P(Y) U 0  = u x , / x 2 .  (3.10) 
i=, 

By virtue of (3.1) and (3.7) one may introduce the metric in M: 

m(F, F ) = s u p  1 "  i = ,  1 ~ j ( : ~ ) I C ( ~ ) - F ~ ( ~ ) l , ~ ~ ~ " ] .  (3.11) 

Lemma 1. On account of (3.2)-(3.4), (3.8) and (3.9) for any FE M there exists a 
unique function X,(y,  .)E S, satisfying the equation 

XF(Y, t )  = Y +  F ( X F ( Y ,  ds (3.12) I"' 
and for Is/ S A(y) the following relations are valid: 

XF(Y,  s) E d ( y )  

V ~ Y , Y ' ,  S X ) c  n ( y ,  Y ' )  e x p [ d ( y ,  y')Ady, Y ' ) ]  (3.13) 

vk(Y, Y', s u o n ( Y ,  Y')L(Y,  Y ' )  exP[uo(Y, Y' )At (Y ,  Y ' ) ]  (3.14) 

where S X : = X , ( y , s ) - X , ( y ' ,  s). 

V ~ ( Y , Y ' , ~ ) : =  1 I L~ (Y .Y ' )  s ~ ~ I l f ; ( s ) l ,  I s ~ ~ & ( Y , Y ' ) } .  (3.15) 
! = I  

Proox For any z, Z'E d ( y )  from (3.41, (3.8) and (3.9) it follows that 
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Then by virtue of (3.8) and (3.9) F is Lipschitz-continuous in d ( y )  and the existence 
of a unique solution X ,  = ( X , ,  . . . , X , )  of (3.121, which does not leave d ( y )  fors  E J,, 
follows from (3.3). From (3.3) and (3.7) it follows 

IX.(Y, SI- X,(Y,  s')l GgxY)lS-s'l  

By virtue of (3.4), (3.8) and (3.9) 

x +;(;,,>>)~<*;(;,, s) -*Y,(y, :')I 
i=, 

< m U y ,  y ) n ( X ( y ,  s), X ( Y ,  s')) 

S%L(Y,Y) x PLi(Y,Y)JX;(Y,S)-X;(Y, s')l 
i=, 

?,taping iiSe =f+h--- erti.rotar 
,.I- oil . ,  rhn-L ,-,...A:+:,.-- (1 < I  -..A /l L\ F-- Y 

.....IC c I , , , I I e L c I  " L L L  -a,, -.lrLh C " l l " l l , V L l D  {J.,, all" \-'."I I V L  -6. 

From (3.12) in view of (3.4), (3.8) and (3.9) it follows that 

E PLi(Y.Y')IX,(Y> s ) - X . ( y ' ,  s)l 
; = I  

This estimate leads to (3.13) by virtue of the Gronwall lemma. The inequality (3.14) 
U follows from (3.4), (3.8). (3.9) and (3.13). 

3.2. The functional differential system 

Consider the SFDE 

X (  1 )  = H (  X , )  

where 

X , ( s )  := X (  f + s) H : =  ( H I , .  . . , H.):S+R" 

and for X ,  X '  E S 

IHt(X)l S g t ( X ( 0 ) )  

p j ( X ( 0 ) ,  X ' (0 ) ) IHt (X) -Hc(X' ) I  
i = ,  

s LO(X(0); x'(o))n(x(o); x ' ( 0 ) )  

+ 3 LL(X(O), X ' ( 0 ) )  V,(X(O),  X'(O),  x - X ' )  
k = I  

(3.16) 

(3.17) 

k 

+ 2 LE(X(O), x'(o))vk(x(o), X'(O), X - X ' )  (3.18) 
k - l  

where 

LO, L ; ,  L: :R" x R" -, R, k = 1, . . . , k, 

The function X:W+W" will be said to  be a solution of (3.16). if X, E S V t  E R  and X 
transforms (3.16) into identity on R. 
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By virtue of lemma 1 the function X, E S V F E  M. Then on M there is defined the 
mapping A: 

A(F)(Y) =H(XP(Y, . )) (3.19) 

Conditions (3.3), (3.4) and (3.9) allows us to use the arguments analogous to that 

F = A ( F )  (3.20) 

to COnStfuCt an SODE approximating (3.16). The sequence of functions F, approximating 
the right-hand side of (3.16) is defined as F,,,=A(F,), F,-O. 

where XF(y, .) is the solution of (3.12), Y E W .  

of [lo] for estimating the iterations of the equation 

3.4. The contraction mapping properties of A 

In the next step we prove ( F . } E  M. 

(3.7). Making use of (3.13), (3.14) and (3.18) we find 
From condition (3.17) it is easy to see that the mapping A preserves the property 

y, y'E R" x R" (3.21) 

Then A ( M )  E M. 
The following theorem shows the convergence of the sequence ( F , } E  M. 

Theorem 2. Let conditions (3.1)-(3.4), (3.9) and (3.10) be fulfilled and H satisfy 
conditions (3.17), (3.18) and (3.21) and 

ko 1 [L:(Y,Y)Ax(Y, Y)fL:(Y,Y)lxi exp[u"L(y,y)A,(y,Y)l~q< 1 

q being a constant. Then 

(3.22) 
k = l  

(i) there exists the unique F E  M satisfying (3.20); 
(ii) any X E  C'(R,R") satisfying the SODE 

X (  f )  = F ( X (  t ) )  f E R  (3.23) 

is the solution of (3.16). 
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Prooj Let m be given by (3.11). The pair (M,  m )  forms the complete metric space, 
which is mapped by the operator A into itself. Estimating the difference 

S X ( s )  = XAY, s )  -XF(Y> s) 

defined by (3.12) for F, F'E M and using the estimates (3.4), (3.8) and (3.9) in analogy 
to lemma 1, on account of the Gronwall lemma one obtains 

vk(Y,Y, S X ) ~ { ~ X P [ ~ ~ , L ( Y , Y ) ~ ~ ( Y , Y ) ~ - ~ ) [ ~ ~ L ( Y , Y ) I ~ " ( F ,  F' )  

V ~ Y , Y ,  S X ) s x ,  e x p [ d h y ) A d y ,  y)lm(F, F').  

Substituting into (3.18) and using the inequality e' - 1 S z e' for z 3 0, under condition 
(3.22) one obtains 

*/*IF) A I F ' I ) s n m / F  P I  
."\I.\. I ,  ,=\A ,IT y".\' , 1 , 

then statement (i) of the theorem follows from the contraction mapping principle. 
0 Statement (ii) follows from (3.20) and (3.12). 

4. Application to equations (2.2) 

The consideration of (2.2) consists of the two parts. First, on account of the results of 
the previous section we prove the existence of the SODE (2.4) with WR solutions 
satisfying (2.2). Second. we prove that all WR solutions of (2.2) are uniquely defined 
by the data (2.3) from the region of asymptotically free motion. This yields that the 
WR solutions of (2.2) belong to the phase flow of the SODE (2.4) and, therefore, the 
uniqueness for the arbitrary data from D(B' )  with sufficiently small E ' .  

4.1. The properties of the EOMS (2.2) 

After calculations in accordance with (2.2') and (2.2") the E O M ~  (2.2) may be rewritten 
as 

du,(t)ldt = h,,(X,) dxp(t)/dt = u,,(t) (4.1) 

where the functionals h , ( X )  are defined on the 12-component functions X ( s ) =  
{o,(t), U2(f), X l ( t ) .  X 2 ( f ) l ,  

x { K i [ x p ( t ) - x , ( t - s ) ,  i p ( t ) ,  i q ( t - s ) l  

+K2[xp(t)-xq(t-s), i p ( t ) ,  i q ( t - s ) ,  ti,(t), dq(f--S)11 

(P, 4) = (1,2), @,I) .  (4.2) 

Here K,[ r, U,, uJ, K2[ r, U,, u2,  w , ,  w2] are rational functions of r, homogeneous upon 
r of the order of -1 and 0 respectively and analytic in up in the neighbourhood of 
zero, K 2  being the linear homogeneous functions upon w p ;  both functions do  not 
contain dimensional parameters; the relation 

K, [ r ,0 ,0]=r / r2  r=1r1 (4.3) 
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gives the Newtonian limit. From the explicit form of these functions one obtains that 

lK2[c u I . u 2 ,  w , , ~ ~ l l ~ B ( c , ) [ l w , l + I w , l l  (4.4) 

for iu,l s c, < 1, where B ( 5 )  is a continuous function upon 5 on [0,1). 

p # q, defined by the equation 
On performing the integration in (4.2) there arise the retarded argiments rPq(t), 

(4.5) 

The equation (4.5) was first studied by R D Driver [ 121; see also [4-81 and references 
therein. The necessary information on the properties of rpu needed in the subsequent 
treatment is given by the following lemma. 

Lemma 3. Let the functions xj( t )  E c2 satisfy the conditions 

~, 
rnq = ixJij-XJ~-rpq)i. 

I ip(t) l  < CI < 1 X,(t) +x2(t). 

Then there is a unique solution rp, ,( t)  E C 2  of ( 4 . 9 ,  which has the following properties: 

( 9  ( 1  - c,)/( l+CJ < Idr,,(t)/dtl< ( l+cA/ ( l  -cd 

(ii) ( 1  - c:) < l x ~ ~ ~ ) - x ~ ( t ) ~ / r , ~ ( ~ ~ < ~ l + c : ~ ~  

Under the variation of 

x,( I )  + x;( f ) = x,( t )  + Sxp( 1) 

lrpq(f) - r;,,(t)I < (1 - c,)~’llsx,(t)l +lSx,(t ~ rrq(t))l) 

i = 1 , 2  

the following estimate takes place: 

(iii) 

where r,”, = min( rPq, rbJ. 

e,g,rpq(t)s rbq( t ) .  Under the variation of x p ( t ) ,  (4.5) for r,,,, and r; ,  yields 

\rpq(t) -r;,(t)lslSxP(t)J+J8xq(i - rFq(t))l +Ixb(t- r , , ) - x ; ( t  - r ;J  

The proof of statements (i) and (ii) is along the same lines as in [4-8, 121. Let 

s ISxp( t ) l  +ISx,(t - r,”,(t))l+ c,lrp9(0 - rbg(t)l 

whence (iii) follows on account of 0 < c, < 1.  

4.2. Applications of theorem 2 lo the auxiliury EOMS 

Since (2.2) do not permit a direct application of theorem 2 beyond the functional 
domain W ( E ) ,  we shall pass from these to the auxiliary truncated equations. The 
right-hand side of these is equivalent to the RHS of (2.2) on the WR trajectories, and 
it goes smoothly to zern beyong the WR region. Then using theorem 2 in the case of 
a sufficiently small E we prove the existence of the SODE (2.4). its solutions satisfying 
the truncated equations. 

!nt:aduce the tr~ncated eql?z!inns 

du,(t)/df = hE(X,) dx,(t)/dt = ~ ( u , ( t ) )  (4.6) 

where 

h:(Xr) := r{R,/[Zx,,(t)l}h,(X,) ~ ( 0 ) : ~  ~T{IuI/(2ci)I 

T{t):={l for C E  [0,0.5]; 2(1-6) for [0.5, 11; 0 for c> I )  R,=O 
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Evidently the solutions of (4.6) satisfying the relations 

l iP(f)l<CI<l ~ 1 2 ( f ) 3  Ro (4.7) 

xI2:=/xI-x2I for all possible 1, will be also the solutions of (4.1). 
Further we put c, <f. 
To apply theorem 2 to E O M ~  (4.6) we admit the subsequent numeration for the 

12-component vector x = (U,, u2 ,  xI, x2). In the conditions for S we put 

g!(X) = kqo(x1z + Ro)Y2 

PKX)  = 2c, 

ILk x') = 1 

i =  l , . .  . , 6  

i = 7 , .  . . , 12 

i = l , .  . . , 6  

&(X, x') = [A(& x')]-' 

A ( x , x ' ) = A ( x , x , ) + ( ~ - c , ) - ~ R ~  

i = 7 , .  . . . ,12 

where 

A(x, x') = (1 - cl)-' min(x,,, x;J 

and 

Q(x) = [&x, x ' ) ] -~  

(4.8) 

(4.9) 

(4.10) 

the constants Q,, go will be defined below. In the relations of the previous section we 
put n = n , = 1 2 ,  k , = l ,  n , = 7 ;  

J , = { s :  I s l s ( l - c I ) - ' x 1 2 )  

d(x) ={x '=  (u;,u~, XI, x;)ER'~: Ix, -x : I  S b,xI2) 

b , = c 1 / ( l - c , ) .  

According to (4.9) 

For X ' E  d(x) we have 

x / , + R , = ( x , , + ( x l - x , ) + ( x , - x ; ) J + R ,  

3 ( 1 - 2 b , ) ( ~ , , + R o ) .  

Analogously 

(4.11) 

xi,+ Rn< (1 +2b,)x, ,+ R,. (4.12) 

For x ' ~ d ( x ) ,  y ' ~ d ( y )  this yields the estimate (3.4) with x , = ( I + c , ) / ( l - q ) ,  x 2 =  

(1-3c1)/(1 - C I ) .  
Denote 

Yn=klRo (4.13) 

this value will he supposed to he sufficiently small which is just the case for a WR motion. 
In view of (4.8) and (4.9) the conditions for S can be written as 

(4.14) 

(4.15) 
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Q ~ ( ~ , ~ ( O ) + R O ) ~ ~ I ~ - S ’ I  for s, S ’ E  Jxcaj. (4.16) 

On performing calculations using the explicit form of hz(X,) and lemma 3 one 

Ih,*(X)ls  C’~(X, , (O)+R,)-~ (4.17) 

obtains 

( k / i ( x ,  x’))C 1 su~ l lS t j , ( s ) l+ lSX~(s ) l /~ (X (O) .  X’(0)) 
P l l . 2  

+lSxp(s)l/[~(X(0), X’(0))12, Is1 A(X(O), X’(0))I (4.18) 

where C = CO( 1 + Qo+ yoqo), C‘= CA( 1 + yoqo), CO, CA being the numerical constants := 
0(1) for yo+O defined only by the functions K , ,  IC2. 

It is also easy to see that 

IP(u)IscI (4.19) 

Ip(u)-p(u’)l s 31u- U’I. (4.20) 

By virtue of (4.17) and (4.19) the estimate (3.17) is fulfilled on the condition that 

g j ( x ) =  kC’(x,,+RJ2 

gdx)  = C I  

i = l , .  . . , 6  

i = 7 , .  . . , 12 

Inequality (3.2) relating g,(x) and gt(x) is avalid if 

CA(1+ 7040)  < 40 

(4.21) 

In previous estimates go has not been specified. For sufficiently small yo(’/aCb< 1) one 
can choose 

q o =  G/(l -Cbo) (4.22) 

in order that (3.2) be valid. 
For (3.3) to be valid we put 

gP(x)=[(l  -c , ) / ( l  -3c,)I2g,(x) i =  1,.  . . , 6  
(4.23) 

then (3.3) follows from the estimates analogous to (4.11) and (4.12). Inequalities (3.4) 
agree with the choice of x , ,  x 2 .  Inequality (3.18) is the consequence of (4.18), (4.20) 
and (4.9), provided that 

L0(x,x‘)=3[i(x, x‘)l-’ (4.24) 

L‘(x ,  x’) = yoC[i(x, x‘)l-’ (4.25) 

L2(x, x’) = yoc.  (4.26) 

gP(x) = g b )  i = 7 , .  . . , 1 2  

Define L(x,  x’) as 

L(x, x’) = Q,[i(x, x’)]-’ 

then (3.9) is valid with u = ( l - c l ) / ( l - 3 c , ) .  

(4.27) 
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Note that the constants C,, C6, C, were defined in view of the structure of the 
SFDE (4.6) and they do  not depend on the choice of yo. The constant Qo, Q, and yo 
have not yet been fixed. Substituting (4.24)-(4.27) into conditions (3.10), (3.21) and 
(3.22) one sees that they are valid for yO+O on the condition that 

Q I  > ~ + O ( Y O )  Q o > ~ o . , Q I c I + O ( Y O ) .  

Therefore all the conditions of theorem 2 are fulfilled for sufficiently small yo. As the 
result we have the next lemma. 

Lemma 4. There exists E > 0 and the Lipschitz continuous functions C,, such that any 
solution of (2.4) satisfying (4.7) is the solution of (2.2). 

Proof: The statement of the lemma follows from theorem 2 in view ofthe considerations 
of this section: there exist an SODE (3.24), its solutions satisfying the auxiliary equations 
(4.6). By construction of the mapping A in this case this SODE has the form 

rj, = C,( U,, 0 2  1 XI 1 1 2 )  in =P(%) p = 1 , 2 .  (4.28) 

By virtue of theorem 2 the RHS of the SODEE M ;  this yields the Lipschitz continuity 
of C, in RI2 due to (3.8) and the expression (4.9) for p,(y, y') and (4.27) for L(y,  y ' ) .  

U The assertion of the lemma then follows from the definition of p ( u ) .  

4.3. The transition from truncated equations to (2.2) 

To return to (2.2) we show that the solutions of the truncated equations corresponding 
to the initial data from D ( E )  are indeed WR trajectories satisfying (2.2). 

Further calculations use the following identities: 

x,(t-r) = x p (  t)-rxp( t)-  r ds( 1 - s )xp(  1- rs) 

x,,( r - r) = xp( t )  - r p = l , 2  

(4.29) 

and the identity for the function f(P) from (2.2'): 

f(P)= 1 + ( P - I )  d s f ' ( l + ( P - l ) s )  (4.30) 16 
where f '=df /dP.  

Using these we separate the Newtonian limit from the terms corresponding to K, 
in (4.2). The remaining terms are: ( a )  the velocity-dependent terms defined by the 
instantaneous values iD and x,,; ( b )  the functional terms containing all the functional 
dependence upon the prehistory due to the second derivatives in (4.29). The terms ( a )  
can be estimated as S k O ( ~ ) [ x , , ( t ) ] - ~  for Ixp(t)ls& and the terms ( b )  are estimated 
in analogy to (4.4). After lengthy calcultions both groups of terms equally with those 
terms corresponding to K2 can be gathered into H:' ,  where 

(4.31) 

the second item satisfying the ipequality 

H t ' ( X , )  c C 2 ~ k [ ~ 1 2 ( t ) ] - z  (4.32) 
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provided that (x,, i,, xI, x2} E S and 

i i t ( t ) , & ( t ) ,  XI(~).X~(~)IE D ( E )  

here S,=O(l) as 5-0. 

Lemma 5. Let the SODE (2.4) be defined by lemma 4. There exist E, T ' ( B  > E ' >  0) such 
that any solution which is specified by the initial data (2.3) from D ( E ' ) ,  does not leave 
D ( E ) .  

Proof: Define 

E(t)<f 1 m,[xb( f )12+g[x , , ( t )1~2 .  (4.33) 
p-1.2 

Any solution of (4.28) ( u l ,  u2, x, , x2) E S by virtue of lemma 1. Let the initial data be 
chosen in such a way that 

E (  to) = ( ~ ' / 2 )  min( m , ,  m 2 )  O < & ' < E  

E being sufficiently small. This inequality is valid on some open interval ( I ; ,  t : )  3 to 
owing to continuity arguments. The solution satisfies (4.6) and, for a sufficiently small 
E ' ,  xp = v, and (xI. XJ satisfies (2.2). Using (2.2) and (4.31) one obtains on this interval 

X , 2 ( 0 3  (X,2(f)X,2(t)) /X1Z(f)  

(on account of (4.32) and (4.35)). 
Evidently 

112 

p=1,2 1 m p l i p l s {  M p=1.2 1 m,,i$] <(2ME) ' /2  M = m , + m ,  

then from (4.36) on account of (4.35) one obtains 

whence 

(4.34) 

(4.35) 

(4.36) 
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Therefore on ( t b ,  t i )  we have 

E' />(  f) s E 

(C3E c: 1, (1  + C3&)&/(1 - C3E) <A) 

to)(  1 + C3E)/ ( 1 - C,E). 

For a sufficiently small E 

we see that the so!U!i~n does no! leave D ( E )  on [!&, and in the neighbourhood of 
1;1, t 6 .  Then the principle of the continuous induction (see e.g. [13]) extends the 
assertion of the lemma on Vt. 0 

On account of lemma 5 we see that the solutions of the SODE (2.4) satisfying (2.3) 
with the data from D(E' )  satisfy the SFDE (2.2). This proves the first part of theorem 1.  

4.4. Uniqueness of solutions of (2.2) with conditions (2.3) 

In order to use the estimates on the RHS of (2.2) we need the following lemma. 

Lemma 6. For a sufficiently small E Z 0 any solution 

{ X I ,  1 2 )  E W E )  

{ X I ,  X2, X I ,  4 E s. 
of SFDE (2.2) satisfies the relation 

Proof: The relation to S is defined by (4.14)-(4.16). The first inequality follows from 
the definition of W ( E ) .  To obtain the others, (2.2) (cf (4.1)) should be written as the 
linear system with respect to z = ( z I , .  . . , ZJ = (i,, x,) 

z;( t ) = A,( t + 1 {B,( f ) z j  ( 1 )  + C,( t ) z j (  t - r d  0) 
6 

j - 1  

+ D + ( t ) z j ( f - r 2 , ( t ) ) l  i = l , .  . , , 6  (4.37) 

where A,, B,, C,, D., are continuously differentiable functions satisfying the inequalities 

lAi(t)I s kcdxiLt)l-' (4.38) 

1 (lB~(t)l+ ICg(t)l+ IDy(f)ll" kCs/xt,( t ) .  (4.39) 

From the definition of W ( E )  it follows that Izi(t)l is bounded. Estimating x L z ( t ) l z , ( t ) l  
in (4.37) on account of (4.38) and (4.39) we obtain 

Li 

suP{x,z(t)lz;(t)l, I E W < * .  

Using lemma 3 we have 

then 
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Using this in (4.37) multiplied by [x,,(t)l’ we obtain 

3 M o  = sup[[x,~(f)l~lz,(f)l ,  f E R I  < kC4 

Again from (4.37) using k/x,2(f)S E one obtains 

This yields the estimate for Mu corresponding to (4.15) provided that 

Theestimate(4.16)involvhg w,=r,(r+s)-z~(f+s‘)isobtainedbymeans ofanalogous 
(but somewhat more cumbersome) considerations using the equation for wi following 
from (4.37). 0 

Now we shall use the fact that all the trajectories defined by ( 2 . 2 ) ,  are asymptotically 

The solution of (2.2) will be said to be AF if 3 R  > 0, U > 0 and To such that for f < To 

(4.41) 

Lemma 7. For a sufficiently small E > 0 all the solutions (xI, xz) E W( E )  of the SFDE 
(2.2) are AF with common constants R, U for given data (2.3). 

Roo$ For the solutions from W ( E )  the consideration is the same as for (4.6) in lemma 
5. Then (4.41) follows from (4.35), for example making use of the analogous I D  

free (AF),  i.e. they pass through the region of nearly uniform motion. 

Ix12( f)13 R +  ulf - Tot. 

considerations of [5-81. 0 

The final step deals with the proof that arbitrary AF solutions of (2.2) are unique 
under conditions (2.3) for sufficiently large initial separations of the particles, and, 
therefore, that any AF solution {x,, x2} E W(E) satisfies (2.4). 

It is clear that in (4.41) R may be considered to be sufficiently large with an 
appropriate choice to To, U remaining fixed. Denote 

up.o = q To) xp.0 = x p  ( TO) I ~ t . o - ~ 2 . 0 1 >  R (4.42) 

and suppose that (4.42) is valid for two AF solutions x, x’of (2.2). Denoting ax, = xD - xb 
we have 

ax,( To) = 0 6u,(To)=0 (4.43) 

lax,( t)l = (i l l  - T , I ~ A ,  (4.44) 

i4.45) 

where Sup = ax,, ; then for t s To it is easy to see that 

1au,(r ji = j t  - To/Ap 

where A, = sup{18up(s)/, s h To1 
To- i 1 < +1<-+1 To - f + A(x( I ) ,  x’( I ) )  

&(X’X’) u ( T U - t ) + R  U 
(4.46) 
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For these solutions from W ( E )  the estimates analogous to (4.17) and (4.18) are valid, 
whence by virtue of (2.2) and making use of (4.44)-(4.46) one obtains 

For a sufficiently large R this means 8.1, = 0. U 

Thus the solution considered in the last lemma is unique. Therefore it is just the 
solution of the SODE (4.28) which is specified uniquely by the initial data and which 
satisfies all necessary restrictions on  the class of functions. This ends the proof of 
theorem 1. 

5. Discussion 

The results obtained in this paper show that the presence of the functional hereditary 
terms in E O M ~  does not conflict with the existence of an ‘instantaneous’ form (2.4) 
describing all the WR solutions, if one assumes that the material system in question 
was isolated in the past (i.e. that the EOME must he valid up to f + -00). The important 
point of our investigation is the consideration of the function class in which the 
solutions are sought, which singles out the WR phase flow. The existence of such phase 
flows is probably the general property of few-body WR hereditary systems, though they 
may not exhaust all the physical trajectories. On the other hand, the assertion that it 
is impossible to express the WR solutions of the physical system in terms of its 
instantaneous state (cf [3]) would mean the presence of the intersections of the 
corresponding phase trajectories. In order to prove such an assertion the nonuniqueness 
of trajectories satisfying the ‘instantaneous’ initial data should be demonstrated. 

The approximations of (2.4) are generated by iterations of (3.20). One can show 
that the first iterations correspond to the approximate E O M ~  obtained formally using 
some kinds of expansions in powers of the interaction constant g. 

Note that from the group properties of initial E O M ~  (2.2) it follows that the exact 
RHS of SODE (2.4) satisfies the Currie-Hill conditions of relativistic invariance [14, 151. 

The present consideration does not include the case g < 0. However, if the solutions 
of the E O M ~  are AF for f + -cc according to (4.41), the estimates of section 4 will be 
applicable. It seems that this is just the case if one brings into play dissipative effects 
(due to radiation processes, etc.): in the presence of energy gain for the time-reversed 
E O M ~  one expects that the two-body system will expand for f + -m, the main portion 
of WR trajectories being AF. 
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